Cov kab tsis sib xws ntawm txhua lub pyramid yog qhov ntev ntawm ob sab ntawm nws lub hauv paus, qhov siab, sab ntug thiab apothems. Txawm li cas los xij, muaj lwm tus yam ntxwv uas cuam tshuam nrog cov ntawv sau tseg - qhov no yog lub kaum sab xis dihedral. Xav txog hauv kab lus nws yog dab tsi thiab nrhiav nws li cas.
Spatial daim duab pyramid
Txhua tus menyuam kawm ntawv muaj lub tswv yim zoo txog qhov muaj feem cuam tshuam thaum nws hnov lo lus "pyramid". Nws tuaj yeem tsim cov duab geometrically raws li hauv qab no: xaiv ib qho polygon, tom qab ntawd kho qhov taw tes hauv qhov chaw thiab txuas mus rau txhua lub ces kaum ntawm lub polygon. Qhov tshwm sim peb-dimensional daim duab yuav yog ib tug pyramid ntawm ib tug arbitrary hom. Lub polygon uas tsim nws yog hu ua lub hauv paus, thiab lub ntsiab lus uas tag nrho nws cov ces kaum txuas nrog yog lub vertex ntawm daim duab. Daim duab hauv qab no schematically qhia lub pentagonal pyramid.
Nws tuaj yeem pom tias nws qhov chaw yog tsim tsis yog los ntawm lub pentagon nkaus xwb, tab sis kuj los ntawm tsib daim duab peb sab. Feem ntau, tus lej ntawm daim duab peb sab no yuav sib npaug rau tus lejsab ntawm lub hauv paus polygonal.
Dihedral kaum ntawm daim duab
Thaum cov teeb meem geometric raug txiav txim siab ntawm lub dav hlau, txhua lub kaum sab xis yog tsim los ntawm ob txoj kab ncaj nraim, lossis ntu. Nyob rau hauv qhov chaw, lub kaum sab xis dihedral tau ntxiv rau cov kab kab no, tsim los ntawm kev sib tshuam ntawm ob lub dav hlau.
Yog tias lub cim txhais ntawm lub kaum sab xis hauv qhov chaw raug siv rau daim duab hauv nqe lus nug, ces peb tuaj yeem hais tias muaj ob hom dihedral kaum:
- Ntawm lub hauv paus ntawm lub pyramid. Nws yog tsim los ntawm lub dav hlau ntawm lub hauv paus thiab ib qho ntawm sab ntsej muag (daim duab peb sab). Qhov no txhais tau hais tias lub hauv paus kaum ntawm lub pyramid yog n, qhov twg n yog tus naj npawb ntawm sab ntawm lub polygon.
- Nruab nrab ntawm ob sab (daim duab peb sab). Tus naj npawb ntawm cov kaum dihedral no kuj yog n pieces.
Nco ntsoov tias thawj hom kev txiav txim siab yog ua rau ntawm cov npoo ntawm lub hauv paus, hom thib ob - ntawm sab ntug.
Yuav ua li cas xam cov kaum ntawm lub pyramid?
Lub kaum sab xis ntawm lub kaum sab xis yog qhov ntsuas tom kawg. Nws tsis yooj yim los xam nws, txij li lub ntsej muag ntawm lub pyramid, tsis zoo li lub ntsej muag ntawm lub ntsej muag, tsis txhob sib tshuam ntawm cov ces kaum sab xis hauv cov ntaub ntawv dav dav. Nws yog qhov txhim khu kev qha tshaj plaws los xam cov txiaj ntsig ntawm cov kaum sab xis uas siv qhov sib npaug ntawm lub dav hlau hauv daim ntawv dav dav.
Hauv qhov chaw peb sab, lub dav hlau tau muab los ntawm cov lus hauv qab no:
Ax + By + Cz + D=0
Qhov twg A, B, C, D yog qee tus lej tiag. Qhov yooj yim ntawm qhov kev sib npaug no yog tias thawj peb tus lej cim yog qhov sib koom ua ke ntawm vector,uas yog perpendicular rau lub dav hlau muab, i.e.:
n¯=[A; B; C
Yog tias qhov kev sib koom ua ke ntawm peb lub ntsiab lus ntawm lub dav hlau paub, tom qab ntawd los ntawm kev noj cov khoom vector ntawm ob lub vectors ua rau ntawm cov ntsiab lus no, ib tus tuaj yeem tau txais cov kev tswj hwm n¯. Tus vector n¯ yog hu ua phau ntawv qhia rau lub dav hlau.
Raws li lub ntsiab txhais, lub dihedral lub kaum sab xis tsim los ntawm kev sib tshuam ntawm ob lub dav hlau sib npaug rau lub kaum sab xis ntawm lawv cov vectors. Piv txwv tias peb muaj ob lub dav hlau uas nws cov vectors ib txwm sib npaug:
1¯=[A1; B1; C1];
2¯=[A2; B2; C2
txhawm rau xam lub kaum sab xis ntawm lawv, koj tuaj yeem siv cov khoom lag luam scalar, tom qab ntawd cov qauv coj los ua:
φ=arccos(|(n1¯n2¯)|/(|n1 ¯||n2¯|)
Los yog hauv daim ntawv ua haujlwm:
φ=arccos(|A1A2+ B1B 2+ C1C2|/(√(A1 2+ B12+C12)√(A22+ B22+ C22))
Cia peb qhia yuav ua li cas siv cov txheej txheem saum toj no rau kev suav cov kaum sab xis thaum daws teeb meem geometric.
Lub kaum ntse ntse ntawm lub ntsej muag plaub lub ntsej muag tsis tu ncua
Xav tias muaj ib lub pyramid tsis tu ncua, ntawm lub hauv paus uas muaj ib lub square nrog ib sab ntawm 10 cm. Qhov siab ntawm daim duab yog12 cm. Nws yog tsim nyog los xam seb lub dihedral kaum yog nyob rau hauv lub hauv paus ntawm lub pyramid thiab rau nws sab.
Vim tias daim duab muab rau hauv qhov xwm txheej ntawm qhov teeb meem yog qhov tseeb, uas yog, nws muaj qhov sib luag siab, ces txhua lub kaum sab xis ntawm lub hauv paus yog sib npaug. Lub kaum sab xis tsim los ntawm sab ntsej muag kuj zoo ib yam. Txhawm rau xam cov kaum sab xis uas yuav tsum tau ua, peb pom cov kev taw qhia vectors rau lub hauv paus thiab ob sab dav hlau. Qhia qhov ntev ntawm sab ntawm lub hauv paus los ntawm tsab ntawv a, thiab qhov siab h.
Daim duab saum toj no qhia tau hais tias lub pyramid quadrangular. Cia peb sau cov kev sib koom ua ke ntawm cov ntsiab lus A, B, C thiab D raws li kev nkag mus ua haujlwm:
A(a/2; -a/2; 0);
B(a/2; a/2; 0);
C(-a/2; a/2; 0);
D(0; 0; h)
Tam sim no peb pom cov kev taw qhia vectors rau lub hauv paus dav hlau ABC thiab ob sab ABD thiab BCD raws li txoj kev tau piav qhia hauv kab lus saum toj no:
For ABC:
AB¯=(0; a; 0); AC¯=(-a; a; 0); n1¯=[AB¯AC¯]=(0; 0; a2)
For ABD:
AB¯=(0; a; 0); AD¯=(-a/2; a/2; h); n2¯=[AB¯AD¯]=(ah; 0; a2/2)
For BCD:
BC¯=(-a; 0; 0); BD¯=(-a/2; -a/2; h); n3¯=[BC¯BD¯]=(0; ah; a2/2)
Tam sim no nws tseem yuav siv cov qauv tsim nyog rau lub kaum sab xis φ thiab hloov qhov sab thiab qhov siab qhov tseem ceeb los ntawm cov teeb meem nqe lus:
Ab ntawm ABC thiabABD:
(n1¯n2¯)=a4/2; |n1¯|=a2; |n2¯|=a√(h2 + a2/4);
φ=arccos(a4/2/(a2a√(h2+ a2/4)))=arccos(a/(2√(h2+ a2 /4)))=67, 38o
Lub kaum sab xis ntawm ABD thiab BDC:
(n2¯n3¯)=a4/4; |n2¯|=a√(h2+ a2/4); |n3¯|=a√(h2 + a2/4);
φ=arccos(a4/(4a2(h2+ a2/4)=arccos(a2/(4(h2+a 2/4)))=81, 49o
Peb xam qhov tseem ceeb ntawm cov ces kaum uas yuav tsum tau pom los ntawm qhov xwm txheej ntawm qhov teeb meem. Cov qauv tau txais los ntawm kev daws qhov teeb meem tuaj yeem siv los txiav txim siab lub dihedral lub kaum sab xis ntawm quadrangular li niaj zaus pyramids nrog txhua qhov txiaj ntsig ntawm a thiab h.
Lub kaum ntse ntse ntawm daim duab peb sab tsis tu ncua
Daim duab hauv qab no qhia txog lub pyramid uas nws lub hauv paus yog daim duab peb sab tsis tu ncua. Nws yog paub tias lub dihedral lub kaum sab xis ntawm ob sab yog txoj cai. Nws yog ib qho tsim nyog los xam thaj tsam ntawm lub hauv paus yog tias nws paub tias qhov siab ntawm daim duab yog 15 cm.
Ib lub kaum sab xis sib npaug rau 90o yog txhais ua ABC hauv daim duab. Koj tuaj yeem daws qhov teeb meem siv cov txheej txheem saum toj no, tab sis qhov no peb yuav ua kom yooj yim dua. Cia peb qhia rau sab ntawm daim duab peb sab a, qhov siab ntawm daim duab - h, apothema - hb thiab sabluj - b. Tam sim no koj tuaj yeem sau cov qauv hauv qab no:
S=1/2ahb;
b2=hb2+ a2 /4;
b2=h2 + a2/3
Vim tias ob sab daim duab peb sab hauv lub pyramid yog tib yam, sab AB thiab CB sib npaug thiab yog ob txhais ceg ntawm daim duab peb sab ABC. Cia peb qhia lawv qhov ntev ntawm x, ces:
x=a/√2;
S=1/2ba/√2
Sib npaug ntawm thaj chaw ntawm daim duab peb sab thiab hloov lub apothem rau hauv cov lus qhia sib xws, peb muaj:
1/2ahb=1/2ba/√2=>
hb=b/√2;
b2=b 2/2 + a2/4=>
b=a/√2;
a2/2=h2 + a2/3=>
a=h√6
cheeb tsam ntawm daim duab peb sab equilateral yog xam raws li hauv qab no:
S=√3/4a2=3√3/2h2
Hloov qhov siab tus nqi los ntawm qhov xwm txheej ntawm qhov teeb meem, peb tau txais cov lus teb: S=584, 567 cm2.